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   Part I 
   Basic Concepts and Principles        
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    Abstract     Since the early appreciation of differences in the time course of 
 antimicrobial activity, much has been learned about the pharmacodynamics of 
 antimicrobials. Specifi c PK/PD indices have been identifi ed which are of major 
importance for effi cacy and for the prevention of the emergence of resistance. Of 
major importance, the magnitudes of these PK/PD indices for effi cacy have been 
shown to be very similar in animal infection models and human infections. Modeling 
has also identifi ed that there are few differences in the index magnitude with differ-
ent dosing intervals, among drugs within the same antimicrobial class (providing 
free drug concentrations are used), with different infection sites (except occasion-
ally for pneumonia), and among susceptible and resistant strains of the same type of 
bacteria. Addition studies have shown that the magnitude of indices can increase 
signifi cantly with a higher inoculum for  S .  aureus  and that neutrophils have a minor 
enhancing effect on antimicrobial activity against Enterobacteriaceae but a more 
variable enhancing effect on activity against  S .  pneumonia  for different antimicrobi-
als. Pharmacodynamic modeling has many applications including establishing new 
optimal dosing regimens, developing new antimicrobials and formulations, deter-
mining susceptibility breakpoints, providing guidelines for empiric therapy, and 
formulary development.  

  Keywords     Pharmacodynamics   •   Modeling   •   PK/PD indices   •   Protein binding   
•   Animal models   •   Neutrophil activity   •   Inoculum size   •   Susceptibility testing  

    Chapter 1   
 Introduction to Pharmacodynamics 

                William     A.     Craig     

        W.  A.   Craig ,  M.D.      (*) 
  Division of Infectious Disease ,  University of Wisconsin School of Medicine and Public 
Health ,   MFCB-5th Floor, 1685 Highland Avenue ,  Madison ,  WI   53705-2281 ,  USA   
 e-mail: wac@medicine.wisc.edu  
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        Introduction 

 Antimicrobial pharmacodynamics deals with the relationship between measures of 
drug exposure and the effi cacy and toxicity of antimicrobial agents. Since the early 
days of penicillin, researchers have been interested in determining which pharma-
cokinetic parameter is most important in determining microbiologic and clinical 
effi cacy. For example, bacterial killing of staphylococci by penicillin was much 
different than by streptomycin (Garrod  1948 ). The rate of killing by penicillin was 
not dependent on the height of the drug concentration, while streptomycin demon-
strated enhanced killing at higher concentrations. Studies in mice-infection models 
suggested that the duration of drug exposure was the most important parameter 
determining in vivo therapeutic effi cacy of penicillin (Eagle et al.  1950 ). Interest in 
antimicrobial pharmacodynamics increased in the 1960s and 1970s when infections 
due to  Pseudomonas aeruginosa  with high MICs to multiple drugs appeared with 
increasing frequency (Rolinson  1973 ). This interest in antimicrobial pharmacody-
namics has been further enhanced by the emergence of antimicrobial resistance to 
many drugs during the last 15–20 years.  

    Time Course of Antimicrobial Activity 

 A major determinant of the time course of antimicrobial activity is whether the drug 
exhibits bactericidal activity and whether the killing is enhanced by increasing con-
centrations or by longer exposure times. The second major determinant is whether 
the drug exhibits persistent inhibition of growth that lasts after the drug exposure. 
There are numerous in vitro persistent effects described in the literature that usually 
act together in the in vivo situation. The in vitro postantibiotic effect (PAE) describes 
the extent of continuing retardation in organism growth when the drug is suddenly 
removed by repeated washing, dilution, fi ltration, or inactivation (McDonald et al. 
 1977 ; Bundtzen et al.  1981 ). The postantibiotic sub-MIC effect (PA-SME) identifi es 
additional prolongation in regrowth that results from sub-MIC drug concentrations 
(Cars and Odenholt-Tornqvist  1993 ). The postantibiotic leukocyte enhancement 
(PALE) identifi es growth retardation that occurs when organisms in the postantibi-
otic state of growth are exposed to leukocytes (McDonald et al.  1981 ). 

 As stated above, these various in vitro persistent effects act together in describing 
the in vivo activity of antimicrobials. By injecting penicillinase intravenously in 
neutropenic mice when drug levels of piperacillin or aspoxicillin were expected to 
drop below the MIC, Oshida et al. ( 1990 ) were able to show that sub-MIC concen-
trations accounted for a little less than half of the 3.3 and 5.2 h in vivo postantibiotic 
effect observed with both drugs, respectively, against  Staphylococcus aureus . 
Increasing the dose (and AUC) of amikacin sixfold increased the duration of the in 
vivo postantibiotic effect with  Klebsiella pneumoniae  in neutropenic mice from 3.4 
to 7.4 h, while the duration of sub-MIC values was less than an hour and virtually 
the same for both doses (Craig et al.  1991 ). However, prolonging the half-life of 
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amikacin from 18 to 110 min by inducing renal impairment also enhanced the AUC 
about sixfold, but the longer duration of sub-MIC concentrations increased the in 
vivo postantibiotic effect from 7.4 to 12.2 h. The role of leukocytes on the in vivo 
PAE has also been assessed. Studies with similar doses of gentamicin against the 
same strain of  K .  pneumoniae  have reported in vivo PAEs of 7.8, 12.0, and 16.5 h in 
neutropenic, normal, and granulocytic mice, respectively (Shimizu et al.  1989 ).  

    Patterns of Antimicrobial Activity 

 Three major patterns of antimicrobial activity have been observed. The fi rst applies to 
antimicrobials with concentration-dependent killing along with prolonged persistent 
effects. This pattern is observed with aminoglycosides, fl uoroquinolones, polymyxins, 
daptomycin, and some of the new glycopeptides, such as telavancin and oritavancin, 
which also exhibit an additional membrane effect mechanism of action. One would 
predict that the ratio of the AUC and peak concentration to the MIC would be the pri-
mary PK/PD indices correlating with antimicrobial effi cacy. Done- fractionation stud-
ies in animal models of infection in which fi ve or six total doses are divided into many 
smaller doses given at different dosing frequencies have been useful in reducing the 
interdependence among the PK/PD indices and confi rming which PK/PD index is most 
important for effi cacy. The relationship of all the PK/PD indices based on total drug 
concentrations (protein binding in mice 15 %) to effi cacy of levofl oxacin against 
 Streptococcus pneumoniae  in the thighs of neutropenic mice are shown in Fig.  1.1  
(Andes and Craig  2002 ). The 24-h AUC/MIC showed the best correlation for effi cacy 
followed by the peak/MIC ratio. The time above MIC looked more like a scattergram.

   The second pattern of antimicrobial activity is the exact opposite of the fi rst pat-
tern with concentration-independent killing and no or very short persistent effects. 
This pattern is characteristic of all of the ß-lactam antibiotics, such as penicillins, 
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  Fig. 1.1    Relationship between three PK/PD indices for total drug of levofl oxacin and the log 10  
CFU/thigh at 24 h for  Streptococcus pneumoniae  ATCC 10813 in the thighs of neutropenic mice. 
Reproduced with permission from Andes and Craig ( 2002 )       
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cephalosporins, carbapenems, and monobactams. With this pattern, one would 
 predict that the duration of time that active antibiotic concentrations exceeded the 
MIC would be the important PK/PD index for effi cacy. Figure  1.2  demonstrates the 
relationships among the various PK/PD indices for total drug concentration of 
 imipenem, a carbapenem ß-lactam antibiotic with protein binding <5 % in mice, 
against a standard strain of  Pseudomonas aeruginosa  in the thighs of neutropenic 
mice. The percentage of the dosing interval that concentrations exceeded the MIC 
showed the best correlation with organism growth and killing, while the relation-
ships with AUC/MIC and peak/MIC looked more like scattergrams.

   The third pattern of antimicrobial activity also exhibits concentration- independent 
killing but these antimicrobials induce prolonged persistent effects. This pattern is 
observed with a large number of antimicrobials including the tetracyclines, tigecy-
cline, macrolides, azithromycin, clindamycin, linezolid and other oxazolidinones, 
chloramphenicol, trimethoprim, sulfonamides, vancomycin, and dalbavancin. 
Because the prolonged persistent effects will protect against regrowth when active 
drug concentration fall below the MIC, one would predict that the amount of drug 
or the AUC/MIC would be the important PK/PD index for these drugs. Figure  1.3  
illustrates that relationship between the change in effi cacy from the start of therapy 
and the various PK/PD indices based on total drug concentrations for vancomycin 
(protein binding 13 % in mice) (Rybak  2006 ). The best correlation for effi cacy was 
seen with 24-h AUC/MIC index. Peak/MIC and time above MIC showed much 
more variation in effi cacy at different magnitudes of the index.

       Magnitude of Index Required for Effi cacy 

 Once the important PK/PD index driving effi cacy is identifi ed, the next piece of 
information needed is what magnitude of the index is required for antimicrobial 
effi cacy. A large number of animal studies on the effi cacy of ß-lactams against 
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  Fig. 1.2    Relationship between three PK/PD indices for total drug of imipenem and the log 10  CFU/
thigh over 24 h for  Pseudomonas aeruginosa  ATCC 27853 in the thighs of neutropenic mice       
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